

LNG EASY MFP

Client LNG EASY

Field Rangon

Location Myanmar

Waterdepth 15 M

Type Spread-moored

Mooring lines Chain, Nylon & HHP

anchors

Scope of Work

Design & Installation of the MFP

- 1. Design of the mooring system
- 2. Installation of chains & anchors
- 3. Hook-up of the MFP
- 4. Structural design of reinforcements
- 5. Installation of riser hoses & Hard piping
- 6. Commissioning of MFP and Cryogenic hose transfer system.
- 7. Successful offloading of first LNG carrier.
- 8. Offshore installation.
- 9. Acted as owner representative.

BUKIT TUAH MOORING

Client M3

Field Bukit Tuah

Location Indonesia

Waterdepth 60 m

Type Spread-moored

Mooring lines 111mm R3

Scope of Design

1. Mooring system strength design

2. Mooring system Fatigue design

3. Anchor system

4. Chain stopper

5. Chain chute

6. Hook-up equipment system design

7. Installation procedures

8. ABS Class approval

UAE MOORING

Client UAE COMPANY

Field UAE

Location UAE

Waterdepth 70 m

Type SPREAD MOORED

NOTE 3-

Mooring lines 124 mm R4

Scope of Design

- 1. Mooring System strength & fatigue design
- 2. Vessel modifications & strengthening
- 3. Installation procedures & management
- 4. Anchor system design and installation.
- 5. Chain stopper, Chain chute
- 6. Hook-up equipment system design
- 7. Offshore Installation
- 8. Full EPIC
- 9. DNV Class approval

FEED BAB / PETROBRAS LIBRA

Client PETROBRAS

Field LIBRA

Location BRAZIL

Waterdepth 2400 M

Type SPREADMOORED

Mooring lines Chain –Polyester-

Chain

Scope	of	Design
-------	----	--------

- 1. Mooring System strength & fatigue design
- 2. Riser incorporation and combined mooring analysis
- 3. Installation procedures
- 4. Anchor system design and installation.

and-oil oids				MODRING 13	HES	CONFESTOR		
arcron No.	(A07m) (art)	m((Ellisons) (grin)	Antinos ISSC A TIPE	å≪ to.	HENCENE FRINC SOUTH July	HERMOTE SERVICE MOTOR TO FURLISH (M)	75.5°	DARK FOR SWEET (NS)
Angley 1	190	190		cine 1	100			
andor 2	180	180	1	sine 2	101	1		
Andrew 3	TOC	THC	1	Um J	110	1		
andur a	100	100	1	time 4	110]		
Andrew 5	19C	TOC	ON HOLD	Uma 3	335	120074	2000pt 240pt 1	179,397
Angey 6	190	100		cine 6	150		K -00 H	
Andre 7	100	100	1	sins 2	380]		
Andrew 0	THC	190]	Una B	.745]		
Andre 9	THC	190		Librar 10	310	1		

	PLEHBLE RISER	DRM & U	MEDIC DOS	
No.	OESCRIPTON	ATOM ACCOUNT (Strate (Strate))	IONIDACIA (ESPACIA (SIMPLE) (SIMPLE) (SIMPLE)	300 A
	Dro stelling - 1	.74		
z	$S^{\prime\prime}$ (on viscous fluir = 1	82		
3	If Polester Rost = 1	80		
4	If Serie Res + 1			
h	0ns unbloor = 2	61	2000 0	2700 pt
0	4" fortio fires + 3	2162	0-00	
2	O' FRIDANA NOT + 2	5401		
	θ^2 that trijection flows ± 2	2108		
1	Distriction - 1	211		

HESS MALAYSIA TEMPORARY MOORING

Client HESS

Field Bergading

Location Malaysia

Waterdepth 70 m

Type Disconnectable

Spread-moored

Mooring lines 76 mm R4

Scope of Design

- 1. Mooring System disconnectable design
- 2. Vessel modifications & strengthening
- 3. Operating Procedures
- 4. Anchor system
- 5. Chain stopper, Chain chute
- 6. Hook-up equipment system design
- 7. Offshore Installation
- 8. Full EPIC
- 9. ABS Class approval

Client North Oil Company

Field AL SHAHEEN

Location Qatar

Waterdepth 70 M

Type CALM BUOY, SPREAD

MOORED, TURRET

Mooring lines Chain

Scope of Design

1. FEED STUDY level 1,2&3 for the mooring systems and vessel conversion requirements for FSO and CALM Buoy system

2. Chain stoppers and mooring system interface specifications, design

- 3. Structural design and engineering for reinforcements on vessel
- 4. Naval Architecture for conversion
- 5. Mooring analysis
- 6. Fatigue analysis
- 7. Complete Mooring system design

ING BANK OSX-2 LAY-UP

Client Ing bank

Field Lay-up

Location Indonesia

Waterdepth 15 M

Type Spread-moored and quay

side mix

Mooring lines Chain & Nylon

	Mooring F	Rope Data	
Line	Paid out length (m)	Туре	MBL (MT)
L01	41.7	PES/PP	200
L02	40.5	PES/PP	200
L03	30.9	PES/PP	200
L04	29.7	PES/PP	200
L05	27.6	PES/PP	200
L06	27.5	PES/PP	158
L07	26.8	PES/PP	200
L08	27.5	PES/PP	200
L09	40.0	PES/PP	158
L10	40.5	PES/PP	158
L11	32.0	PES/PP	158
L12	31.5	PES/PP	158
L13	33.0	PES/PP	158
L14	32.2	PES/PP	158
L15	34.5	PES/PP	158
L16	34.5	PES/PP	158
L17	55.5	PES/PP	158
m,₁EF	PIC 63.5	PES/PP	158
L19	64.5	PES/PP	158

Scope of Work

Decommissioning and lay-up for the mooring syst

- 1. Decommissioning of the mooring system
- 2. Detailed mooring analysis for vessel lay-up.
- 3. Structural strength analysis of the FPSO and jetty bollards.
- 4. Supply of mooring system.
- 5. Offshore installation.
- 6. Acted as owner representative.

